Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Pathol Res Pract ; 255: 155191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340582

RESUMO

INTRODUCTION: We aimed to investigate the expression and prognostic role of NAA10 in clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS: We performed a gene expression and survival analysis based on the human cancer genome atlas database of ccRCC patients (TCGA-KIRC). RESULTS: The patients in the TCGA-KIRC (n = 537) were divided into two subgroups: NAA10-low and NAA10-high expression groups. NAA10-high ccRCC exhibited higher T stages (p = 0.002), a higher frequency of distant metastasis (p = 0.018), more advanced AJCC stages (p < 0.001), a lower overall survival time (p = 0.036), and a lower survival rate (p < 0.001). NAA10-high ccRCC was associated with increased activity of non-specific oncogenic pathways, including oxidative phosphorylation (p < 0.001) and cell cycle progression [G2 to M phase transition (p = 0.045) and E2F targets (p < 0.001)]. Additionally, the NAA10-high tumors showed reduced apoptosis via TRIAL pathways (p < 0.001) and increased levels of activity that promoted epithelial-mesenchymal transition (p = 0.026) or undifferentiation (p = 0.01). In ccRCC, NAA10 expression was found to be a negative prognostic factor in both non-metastatic (p < 0.001) and metastatic tumors (p = 0.032). CONCLUSIONS: In ccRCC, NAA10 expression was shown to be a negative prognostic factor related to tumor progression rather than tumor initiation, and high NAA10 expression promoted epithelial-mesenchymal transition and undifferentiation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Prognóstico , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética
4.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188973, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659460

RESUMO

Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.


Assuntos
Acetiltransferases , Neoplasias , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Eur J Hum Genet ; 31(7): 824-833, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130971

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microftalmia , Humanos , Feminino , Síndrome , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Genótipo , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo
6.
J Neuropathol Exp Neurol ; 82(7): 650-658, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37253389

RESUMO

NAA10 is a novel biomarker of cancer progression. The oncogenic and biological mechanisms of NAA10 in human malignancies are controversial and remain to be elucidated. Herein, we investigated the biological and clinicopathological implications of NAA10 gene expression in adult gliomas. We collected data from The Human Cancer Genome Atlas (TCGA) database, including patients from TCGA-GBM and TCGA-LGG projects. In total, there were 666 patients from the 2 projects (513 and 153 from TCGA-LGG and TCGA-GBM, respectively). Different analyses (pathway, DNA methylation, and survival analyses) require further specific case eliminations. Based on NAA10 expression, we divided 666 tumors into 2 subgroups: NAA10-high and NAA10-low glioma. There were higher activities of cell proliferation, metabolic reprogramming, DNA repair, angiogenesis, epithelial-mesenchymal transition, TNF-α, IL6/JAK/STAT6, mTORC1 signaling, and MYC targets in NAA10-high glioma, while P53, TGF-ß, Wnt, and Hedgehog pathways were highly expressed by NAA10-low gliomas. t-distributed stochastic neighbors embedding dimension reduction of DNA methylation also showed a high distribution of NAA10-high gliomas in distinct clusters. Survival analyses showed that high NAA10 expression was an independent prognostic factor. NAA10 expression dictated epigenetic, genetic, and clinicopathological differences in adult glioma. Further studies are required to investigate the detailed NAA10 oncogenic mechanisms and to validate NAA10 immunohistochemistry.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/patologia , Proteínas Hedgehog/genética , Glioma/patologia , Metilação de DNA , Epigênese Genética , Prognóstico , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
7.
Am J Med Genet A ; 191(5): 1293-1300, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810866

RESUMO

Our study of 61 children with NAA10-related neurodevelopmental syndrome, an X-linked disorder due to NAA10 gene variants, demonstrated a high prevalence of growth failure, with weight and height percentiles often in the failure-to-thrive diagnostic range; however, dramatic weight fluctuations and phenotypic variability is evidenced in the growth parameters of this population. Although never previously explored in depth, the gastrointestinal pathology associated with NAA10-related neurodevelopmental syndrome includes feeding difficulties in infancy, dysphagia, GERD/silent reflux, vomiting, constipation, diarrhea, bowel incontinence, and presence of eosinophils on esophageal endoscopy, in order from most to least prevalent. Additionally, the gastrointestinal symptom profile for children with this syndrome has been expanded to include eosinophilic esophagitis, cyclic vomiting syndrome, Mallory Weiss tears, abdominal migraine, esophageal dilation, and subglottic stenosis. Although the exact cause of poor growth in NAA10-related neurodevelopmental syndrome probands is unclear and the degree of contribution to this problem by GI symptomatology remains uncertain, an analysis including nine G-tube or GJ-tube fed probands demonstrates that G/GJ-tubes are overall efficacious with respect to improvements in weight gain and caregiving. The choice to insert a gastrostomy or gastrojejunal tube to aid with weight gain is often a challenging decision to make for parents, who may alternatively choose to rely on oral feeding, caloric supplementation, calorie tracking, and feeding therapy. In this case, if NAA10-related neurodevelopmental syndrome children are not tracking above the failure to thrive (FTT) range past 1 year of age despite such efforts, the treating physicians should be consulted regarding possibly undergoing G-tube placement to avoid prolonged growth failure. If G-tubes are not immediately inducing weight gain after insertion, recommendations could include altering formula, increasing caloric input, or exchanging a G-tube for a GJ-tube by means of a minimally invasive procedure.


Assuntos
Nutrição Enteral , Refluxo Gastroesofágico , Criança , Humanos , Nutrição Enteral/métodos , Gastrostomia/métodos , Refluxo Gastroesofágico/cirurgia , Síndrome , Insuficiência de Crescimento/genética , Aumento de Peso , Variação Biológica da População , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E
8.
Cell Death Dis ; 13(11): 995, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36433943

RESUMO

N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.


Assuntos
Neoplasias Esofágicas , Humanos , Acetilação , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/fisiopatologia , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
10.
Sci Adv ; 8(24): eabn6153, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35704578

RESUMO

In humans, the Huntingtin yeast partner K (HYPK) binds to the ribosome-associated Nα-acetyltransferase A (NatA) complex that acetylates ~40% of the proteome in humans and Arabidopsis thaliana. However, the relevance of HsHYPK for determining the human N-acetylome is unclear. Here, we identify the AtHYPK protein as the first in vivo regulator of NatA activity in plants. AtHYPK physically interacts with the ribosome-anchoring subunit of NatA and promotes Nα-terminal acetylation of diverse NatA substrates. Loss-of-AtHYPK mutants are remarkably resistant to drought stress and strongly resemble the phenotype of NatA-depleted plants. The ectopic expression of HsHYPK rescues this phenotype. Combined transcriptomics, proteomics, and N-terminomics unravel that HYPK impairs plant metabolism and development, predominantly by regulating NatA activity. We demonstrate that HYPK is a critical regulator of global proteostasis by facilitating masking of the recently identified nonAc-X2/N-degron. This N-degron targets many nonacetylated NatA substrates for degradation by the ubiquitin-proteasome system.


Assuntos
Arabidopsis , Acetiltransferase N-Terminal A , Acetilação , Acetiltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Proteostase
11.
Genes (Basel) ; 13(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328089

RESUMO

Variants in NAA15 are closely related to neurodevelopmental disorders (NDDs). In this study, we investigated the spectrum and clinical features of NAA15 variants in a Chinese NDD cohort of 769 children. Four novel NAA15 pathogenic variants were detected by whole-exome sequencing, including three de novo variants and one maternal variant. The in vitro minigene splicing assay confirmed one noncanonical splicing variant (c.1410+5G>C), which resulted in abnormal mRNA splicing. All affected children presented mild developmental delay, and catch-up trajectories were noted in three patients based on their developmental scores at different ages. Meanwhile, the literature review also showed that half of the reported patients with NAA15 variants presented mild/moderate developmental delay or intellectual disability, and possible catch-up sign was indicated for three affected patients. Taken together, our study expanded the spectrum of NAA15 variants in NDD patients. The affected patients presented mild developmental delay, and possible catch-up developmental trajectories were suggested. Studying the natural neurodevelopmental trajectories of NDD patients with pathogenic variants and their benefits from physical rehabilitations are needed in the future for precise genetic counseling and clinical management.


Assuntos
Deficiência Intelectual , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Transtornos do Neurodesenvolvimento , Povo Asiático , Criança , Estudos de Coortes , Humanos , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Transtornos do Neurodesenvolvimento/patologia , Sequenciamento do Exoma/métodos
12.
Proteomics Clin Appl ; 16(3): e2100081, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182098

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is one of the most common and serious malignancies in China. However, the exact mechanisms of tumor progression are still unclear. Thus, identifying biomarkers for early diagnosis, prognostic and recurrence assessment of ESCC is necessary. EXPERIMENTAL DESIGN: iTRAQ was used to identify differentially expressed proteins (DEPs) in tumor tissues. N-alpha-acetyltransferase 10 (NAA10) is confirmed and validated by immunohistochemistry and western blotting. Furthermore, the effects of NAA10 on TE-1 cells were detected by CCK-8, colonies formation, anchorage-independent growth in soft agar, migration and transwell assays. LinkedOmics was used to identify differential gene expression with NAA10 and to analyze Gene Ontology and KEGG pathways. Coexpression gene network was conducted by the STRING database and Cytoscape software (MCODE plug-in). RESULTS: 516 DEPs were identified. NAA10 was downregulated in cancer tissues and selected for further confirmed. Furthermore, NAA10 can inhibit proliferation and tumorigenesis, and suppress migration and invasion of TE-1. Functional network analysis suggested that NAA10 regulates the ribosome pathways involving eight ribosomal proteins. CONCLUSION AND CLINICAL RELEVANCE: These findings clearly demonstrated that NAA10 is a tumor suppressor and novel potential biomarker for ESCC, laying a foundation for further study of the role of NAA10 in carcinogenesis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Espectrometria de Massas em Tandem
13.
Nat Commun ; 13(1): 810, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145090

RESUMO

N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered Nα-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability.


Assuntos
Acetiltransferases/metabolismo , Plantas/metabolismo , Proteoma/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Arabidopsis/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/genética , Ribossomos/metabolismo
14.
Hum Genet ; 141(8): 1355-1369, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35039925

RESUMO

NAA10 is the catalytic subunit of the N-terminal acetyltransferase complex, NatA, which is responsible for N-terminal acetylation of nearly half the human proteome. Since 2011, at least 21 different NAA10 missense variants have been reported as pathogenic in humans. The clinical features associated with this X-linked condition vary, but commonly described features include developmental delay, intellectual disability, cardiac anomalies, brain abnormalities, facial dysmorphism and/or visual impairment. Here, we present eight individuals from five families with five different de novo or inherited NAA10 variants. In order to determine their pathogenicity, we have performed biochemical characterisation of the four novel variants c.16G>C p.(A6P), c.235C>T p.(R79C), c.386A>C p.(Q129P) and c.469G>A p.(E157K). Additionally, we clinically describe one new case with a previously identified pathogenic variant, c.384T>G p.(F128L). Our study provides important insight into how different NAA10 missense variants impact distinct biochemical functions of NAA10 involving the ability of NAA10 to perform N-terminal acetylation. These investigations may partially explain the phenotypic variability in affected individuals and emphasise the complexity of the cellular pathways downstream of NAA10.


Assuntos
Deficiência Intelectual , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Acetilação , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
15.
Life Sci Alliance ; 5(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34764209

RESUMO

N-terminal acetylation is a prominent protein modification, and inactivation of N-terminal acetyltransferases (NATs) cause protein homeostasis stress. Using multiplexed protein stability profiling with linear ubiquitin fusions as reporters for the activity of the ubiquitin proteasome system, we observed increased ubiquitin proteasome system activity in NatA, but not NatB or NatC mutants. We find several mechanisms contributing to this behavior. First, NatA-mediated acetylation of the N-terminal ubiquitin-independent degron regulates the abundance of Rpn4, the master regulator of the expression of proteasomal genes. Second, the abundance of several E3 ligases involved in degradation of UFD substrates is increased in cells lacking NatA. Finally, we identify the E3 ligase Tom1 as a novel chain-elongating enzyme (E4) involved in the degradation of linear ubiquitin fusions via the formation of branched K11, K29, and K48 ubiquitin chains, independently of the known E4 ligases involved in UFD, leading to enhanced ubiquitination of the UFD substrates.


Assuntos
Acetiltransferase N-Terminal A/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Acetilação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/genética , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteólise , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Rev. ANACEM (Impresa) ; 16(2): 101-107, 2022. ilus
Artigo em Espanhol | LILACS | ID: biblio-1525495

RESUMO

Las N-terminal acetiltransferasas (NaT) son fundamentales en el desarrollo, funcionamiento y vida media celular, acetilando gran parte del proteoma humano. Entre las ocho NaT identificadas, N-terminal acetiltransferasa A (NaTA) acetila a un mayor número de sustratos, teniendo además un rol fundamental en el neurodesarrollo. Previamente, estudios han demostrado que mutaciones en la subunidad catalítica de NaTA, NAA10, se asocian con trastornos del neurodesarrollo. Sin embargo, nuevas líneas investigativas sugieren que mutaciones de la subunidad auxiliar, NAA15, también tendrían un rol importante en el desarrollo de estos trastornos. Esta revisión se realiza con el objetivo de recopilar evidencia sobre variantes de NAA15 relacionadas con Discapacidad Intelectual (DI) y Trastorno de Espectro Autista (TEA). Se consultaron fuentes actualizadas sobre acetilación N-terminal, NaT, DI y TEA y mutaciones reportadas de NAA15 y sus expresiones fenotípicas, publicadas entre 2011 y 2022. Se concluye que, aun cuando existe relación entre mutaciones de NAA15, DI y TEA, todavía es necesario esclarecer los mecanismos fisiopatológicos de estos trastornos, el rol de NaTA y el impacto de variantes de sus subunidades en las vías moleculares y el fenotipo, lo que se dificulta por razones que van desde la complejidad de estas vías hasta el elevado costo de análisis genéticos. Se sugiere continuar la investigación en esta área, para comprender las bases moleculares subyacentes a estos trastornos y el rol de las mutaciones en subunidades de NaTA, con el fin último de estudiar potenciales tratamientos que mejoren la calidad de vida de las personas con estos trastornos y sus familias.


Nt-acetyltransferases (NaT) are essential in cell development, function and half-life, catalyzing most of the human proteome. Among the eight NaTs identified, N-terminal acetyltransferase A (NaTA) acetylates a greater number of substrates, also having a fundamental role in neurodevelopment. Previously, studies have shown that mutations in the catalytic subunit of NaTA, NAA10, are associated with neurodevelopmental disorders. However, new research lines suggest that mutations of the NAA15 helper subunit also plays an important role in the development of these disorders. This review is carried out with the objective of gathering evidence on NAA15 variants related to Intellectual Disability (ID) and Autism Spectrum Disorder (ASD). Updated sources on N-terminal acetylation, N-acetyltransferases, DI and TEA and reported mutations of NAA15 and their phenotypic expressions, published between 2011 and 2022 were consulted. It is concluded that even though there is a relationship between mutations of NAA15, ID and ASD exists, it is still necessary to clarify the pathophysiological mechanisms of these disorders, the role of NaTA and the impact of variants of its subunits in the molecular pathways and in the phenotype, for reasons ranging from the complexity of these pathways to the high cost of genetic testing. It is suggested to continue research in this area, to understand the molecular bases underlying these disorders and the role of mutations in NatA subunits, with the ultimate aim of studying potential treatments that improve the quality of life of people with these disorders and their families.


Assuntos
Humanos , Acetiltransferase N-Terminal A/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Variação Genética , Acetiltransferase N-Terminal A/metabolismo , Mutação/genética
17.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769235

RESUMO

NAA10 is a major N-terminal acetyltransferase (NAT) that catalyzes the cotranslational N-terminal (Nt-) acetylation of 40% of the human proteome. Several reports of lysine acetyltransferase (KAT) activity by NAA10 exist, but others have not been able to find any NAA10-derived KAT activity, the latter of which is supported by structural studies. The KAT activity of NAA10 towards hypoxia-inducible factor 1α (HIF-1α) was recently found to depend on the hydroxylation at Trp38 of NAA10 by factor inhibiting HIF-1α (FIH). In contrast, we could not detect hydroxylation of Trp38 of NAA10 in several human cell lines and found no evidence that NAA10 interacts with or is regulated by FIH. Our data suggest that NAA10 Trp38 hydroxylation is not a switch in human cells and that it alters its catalytic activity from a NAT to a KAT.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Processamento de Proteína Pós-Traducional , Células HEK293 , Células HeLa , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Triptofano/genética , Triptofano/metabolismo
18.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639033

RESUMO

N-terminal acetylation (Nt-acetylation) catalyzed by conserved N-terminal acetyltransferases or NATs embodies a modification with one of the highest stoichiometries reported for eukaryotic protein modifications to date. Comprising the catalytic N-alpha acetyltransferase (NAA) subunit NAA10 plus the ribosome anchoring regulatory subunit NAA15, NatA represents the major acetyltransferase complex with up to 50% of all mammalian proteins representing potential substrates. Largely in consequence of the essential nature of NatA and its high enzymatic activity, its experimentally confirmed mammalian substrate repertoire remained poorly charted. In this study, human NatA knockdown conditions achieving near complete depletion of NAA10 and NAA15 expression resulted in lowered Nt-acetylation of over 25% out of all putative NatA targets identified, representing an up to 10-fold increase in the reported number of substrate N-termini affected upon human NatA perturbation. Besides pointing to less efficient NatA substrates being prime targets, several putative NatE substrates were shown to be affected upon human NatA knockdown. Intriguingly, next to a lowered expression of ribosomal proteins and proteins constituting the eukaryotic 48S preinitiation complex, steady-state levels of protein N-termini additionally point to NatA Nt-acetylation deficiency directly impacting protein stability of knockdown affected targets.


Assuntos
Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/metabolismo , Acetilação , Catálise , Quinases Ciclina-Dependentes/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Metabolismo dos Lipídeos , Acetiltransferase N-Terminal A/genética , Proteoma , Proteômica/métodos , Especificidade por Substrato
19.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355692

RESUMO

Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.


Assuntos
Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Acetilação , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/deficiência , Acetiltransferase N-Terminal E/metabolismo
20.
Genes (Basel) ; 12(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200686

RESUMO

Since 2011, eight males with an X-linked recessive disorder (Ogden syndrome, MIM #300855) associated with the same missense variant p.(Ser37Pro) in the NAA10 gene have been described. After the advent of whole exome sequencing, many NAA10 variants have been reported as causative of syndromic or non-syndromic intellectual disability in both males and females. The NAA10 gene lies in the Xq28 region and encodes the catalytic subunit of the major N-terminal acetyltransferase complex NatA, which acetylates almost half the human proteome. Here, we present a young female carrying a de novo NAA10 [NM_003491:c.247C > T, p.(Arg83Cys)] variant. The 18-year-old girl has severely delayed motor and language development, autistic traits, postnatal growth failure, facial dysmorphisms, interventricular septal defect, neuroimaging anomalies and epilepsy. Our attempt is to expand and compare genotype-phenotype correlation in females with NAA10-related syndrome. A detailed clinical description could have relevant consequences for the clinical management of known and newly identified individuals.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Fenótipo , Adolescente , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Genótipo , Humanos , Deficiência Intelectual/patologia , Mutação de Sentido Incorreto , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...